直到陈辉重新写完第一问的解答过程,安成章才后知后觉的发现了其中的奥妙。
是了!
线性变换 f关于基向量的作用公式的递推和关联形式跟李代数太像了。
安成章暗自懊恼,知道答案后再来看,他觉得这道题就应该用李代数来求解,这么明显的事情他一开始竟然没想到。
不过看到陈辉的解法后,他忽然又平静了下来。
他即便知道了这道题要用李代数求解,可求解的关键在于构建辅助结构和同态关系,这种巧妙的映射就算给他一天时间他也不一定能想出来。
陈辉刚才却都没有停下来半秒,整个解答过程都是一气呵成,一蹴而就的。
唯一的停顿还是之前停笔的几分钟。
几分钟时间,就能想到这么多东西?
这个小家伙脑袋里到底装的什么?
安成章眼中的光芒暗淡了几分。
他原本觉得自己在数学上还是有些天赋的,可现在跟真正的天才比起来,犹如天壤之别。
赵德峰也有些奇怪,之前一个小问陈辉都花了半个小时,现在只用了二十来分钟就全部做完了?
不过他也没多想,迈步上前,准备叫陈辉回学校做题。
他们毕竟是日理万机的校长,总不能一直陪陈辉在这儿耗着吧?
安成章伸手拦住了他,对他微微摇头。
他看得出来,陈辉此时状态火热,还是不要打扰他为好。
数学也是很讲灵感的。
更何况,这第五题,一看就不是善茬。
【对于 r3中的任何中心对称的凸多面体 v,证明可以找到知道椭球面 e,把凸多面体包在内部,且 e的表面积不超过 v的表面积的 3倍。】
众所周知,数学题目长不一定简单,但题目短,肯定不简单。
这道题涉及几何拓扑,并且还需要图形学的最小包络球,以及一些优化的知识。
安成章本身对这方面有些研究,但也只有个大致思路,想要做出来恐怕没个十天半个月是没指望的。
果然,陈辉卡在了这道题,他停笔望着屏幕看了十几分钟了。
赵德峰大概猜到